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Surrogating FBA with neural methods

Learning on experimental data with hybrid models

Introduction

• Flux Balance Analysis (FBA): main approach for studying
metabolic networks1

• Constrained optimization principle: with v1 constrained, 
optimize v3

• How can we surpass uptake flux measurement?
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• Hybrid model: neural layer + mechanistic layer2

• Challenge: mechanistic layer compatible with gradient back-propagation 

• Alternative to Simplex solver: Linear and Quadratic programming neural methods

• Custom loss function to assess constraints
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• Cmed describes medium concentrations

• V 0 accelerates the mechanistic layer

• Error computation: experimental growth rate 
+ network constraints

• Backpropagation to both neural layers
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Conclusions

• Successful embedding of metabolic
networks in machine learning
architectures

• Hybrid modelling augments 
mechanistic models, saving time 
and resources

• Opens a new door for exploiting
metabolic networks
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• LP needs less iterations than QP

• Both perform FBA with gradient 
back-propagation compatibility
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