INRAQ

Métaprogramme DIGIT-BIO
X Axe 1 : Multiscale deciphering of
living functions
Axe 2 : Prediction of phenotypes
Axe 3 : Transfer and generalisation

Exploratory project (June 2022 – May 2024)

TEMPLATE - inTEractive siMulations to exPlore pLant pAThogEns interactions

Introduction/ Context - The plant immune response differs from that of animals in that **all plant cells are spatially fixed and immunocompetent**, i.e. they have the same capacity to respond to pathogen attack. These specificities have two consequences: the **regulation of immunity is central for resistance phenotype**, and the **plant immune response is highly spatially structured**. Studying these two properties and their impact on disease development is crucial to link gene expression and resistance phenotype at the scale of organism and **identify genes and signaling pathways regulating immunity**.

Project Coordination Adelin Barbacci / LIPME, Toulouse Frédérick Garcia / MIAT, Toulouse

Partnership IPSIM, Montpellier

Objectives

The project aims at **developing a simulation model of plant/fungus interaction** at the cellular scale to study the spatiotemporal processes involved in the quantitative defense of the plant. This model will attempt to represent the progression of a mycelium colony of the pathogenic fungus *Sclerotinia sclerotiorum* in an *Arabidopsis thaliana* leaf.

The biological question at the heart of this project will concern the formation of patterns of immune response self-organized in time and space and associated with transcriptomic reprogramming.

Results and methods

We propose to use **Irritator**, a DEVS discrete event formalism which is known for its reproducibility, modularity and multi-formalism modeling approach.

We develop a computer environment allowing interactive modeling and simulation, to help biologists in their experimental explorations, in an interactive approach linking the experimenter, the biological object and the numerical model.

Expected impact and perspectives

This project will allow:

- To further understand the spatiotemporal regulation of plant immune response
- To provide an **integrative simulation tool** to the plant pathology community
- a more relevant **analysis of data from single cell transcriptomic** studies which is a major challenge for biology in the next ten years.

Centre **INRAe Occitanie - Toulouse**

Adress: MIAT - INRAE 24 chemin de Borde Rouge Auzeville - CS 52627 31326 Castanet-Tolosan cedex

Contact: frederick.garcia@inrae.fr